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ABSTRACT

The results of nonequilibrium modeling of the two-phase critical flow in
tubes and in the jet expansion region are presented as a function of the
stagnation pressure and subcooling of liquid in the vessel to which the tube
ls attached and of the geometric characteristics of the tube such as its
length and diameter. The two-phase flow modeling involves the use of the
basic conservation and balance equations of each phase which were
numerically solved to obtain the critical flow at the tube end and the
Steady state axisymmetric flow distribution in the Jjet. The numerical
results are compared with the experimental data of critical flow rates and
pressure distributions in tubes and with the total pressure distribution in
the jet at various locations along the jet. In both of these situations it
is shown that this comparison is very good and that the numerical models can
be used to study the jet forces,.
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1. INTRODUCTION

The two-phase critical flow discharge through tubes and the development
of flow in the jet expansion region on the outside of the tube play
important roles in the safety design of nuclear reactors. The critical flow
rate in a tube may occur during the tube rupture in a pressurized water
reactor carrying a high pressure liquid coolant and as such it depends on
the state of the fluid on the upstream of the break and on the
characteristics of the break itself. As the fluid expands in the tube, from
a high pressure in the vessel to which the tube is attached to the low
pressure of the atmosphere on the outside of the tube, it flashes into a
two-phase mixture. This mixture may then produce significant forces from its
expanding jet on the outside of the tube on the equipment that may be
located in the path of the high velocity two-phase jet.

1.1 Previous Work and Objectives of the Paper

Many studies have been carried out in the past on the two-phase
critical flows in tubes and the reviews of these may be found in [1-51.
These studies were concerned with the homogeneous or equilibrium models and
with a wide variety of the nonequilibrium models. The equilibrium models
assume the equality of phase temperatures, pressures and flow velocities and
are found to model the two-phase critical flows well whenever the residence
time of a fluid particle in the tube is large and the subcooling of the
liquid in the vessel to which the tube is attached is small. For short tubes
and subcooled liquid conditions, the equilibrium modeling of two-phase
critical flows is not adequate and a recourse to the nonequilibrium modeling
is necessary for the proper prediction of critical flow parameters.

The nonequilibrium modeling assumes hydrodynamic  and thermal
nonequilibrium between the phases. Although a wide variety of such models
have been considered over the years [1-4], the best modeling approaches have
proved to be those which are based on the separate conservation and balance
equations of each phase, so that the eritical flow at the tube end is
determined on the basis of the history of flow up to the critical point. The
detailed two-phase flow modeling also requires the specification of
constitutive equations as a function of the flow regime which may not be
known sufficiently well and, therefore, this modeling approach may not be
very desirable in some situations.

When a two-phase mixture exits from a tube with the critical or maximum
flow rate, the mixture readily expands into the ambient atmosphere due to
the considerable pressure differential that may exist between the fluid at
the tube exit and the atmosphere, This pressure difference produces
different rates of expansion of the liquid and gas phases and may lead to
considerable nonequilibrium between the phases 1in the two-phase Jet
expansion region. Consequently, an equilibrium two-phase flow modeling in
the jet is not expected to be reasonable and the flow conditions at the tube
exit may significantly affect the flow evolution in the jet.

From the above it is clear that the two-phase flow modeling of the jet
should involve hydrodynamic and thermal nonequilibrium and that the flow
conditions at the tube exit should be also determined by a nonequilibrium
critical flow model in order to predict the jet flow characteristics
reliably as a function of tube geometric characteristies and liquid
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stagnation conditions. The objectives of this paper are, therefore, the
following: (1) to present nonequilibrium models for modeling the crilical
flows in tubes and flows in the jet expansion region, (2) to compare the
model predictions with the experimental data, and (3) to discuss the
numerical results pertaining to the flow distribution.

2. TWO-PHASE FLOW MODELING

T? model the two-phase critical flow in a tube and flow in the Jjet
expansion region use will be made of the one- and two-dimensional form of
the_ conservation and balance equations of two-phase flow, respectively.
Dgr1ng the two-phase critical flow discharge through a tube the
disturbances in the jet cannot propagate upstream into the tube and'it is
permissible to solve separately the critical flow in the tube and then to
use the fluid conditions at the tube exit as the boundary conditions for a
model of the flow in the jet. This approach will be followed here for the
interest of simplicity in the overall modeling and also for the purpose of
developing separate modeling capabilities in each flow region.

2.1 Two-Phase Critical Flow Modeling

The critical flow in tubes will be modeled by a set of nonequilibrium
Fwo-phase flow equations assuming a steady state and one-dimensional flow.
For tne purpose of some simplicity in the model, 1t is also assumed tnat the
gas phase is thermal equilibrium (at a local saturation pressure) and that
both phases are at the same pressure at any cross-section of the duct. From
the conservation of mass equations of gas and liquid,

HG = apghu; = xM (2.1)
M, - (1=a)p Au, = (1-x)M (2.2)

and equations of state

g = pG(P) (2.3)
Py = pL(hL,P) (2.4)

wh?re M denotes the mass flow rate, x the quality, a the gas volumetric or
void fration, A the cross-sectional area of the tube, u the velocity along
the ax?s of the tube, p the density, P the pressure and h the enthalpy. The
supscrxpts G and L denote the gas and liquid phases. With z denoting the
axial distance along the tube, the governing conservation and balance
equations of two-phase flow may be written in the following form [5]:

dp du
da P G d
A —_— — — - dA
Pehug gz * MG G gz * WA GF ~ M E = - angug G (2.5)
dp du
. da L. dp L d
Ay =2 1= —y = . — g
PLAY, g, * (medAy (5)) 3+ (madpi A g== v Moo o
dp, L dhL A
- —_— —_— = - psiy
(1 a)AuL(ahL_P o (1 a)pLuL iz (2.6)
du
dP
A - - bt = - = - do
gV gz " T o G T FLgt ~ Figh ¢ onlugruy M g -
p gBahAcos® (2.7)
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du
L dP
(1madpy Ay = = = (ma)h o+ Figh = Fuh =

dx _
(1 n)(uG uL)M iz pLg(1 a)Acose (2.8)
dh du

1, 2 2., dx G. dp

MOh g *+ 3(ugmu)] @ ¢ DM o] 57 DxMug) 2=
du, dh
[O=x)Mu ] 57 + [O-x)M] 7= + Mgeoss = 0 (2.9)
dQ

L2y .

Mihg * 3 (ugu) §; = & €0

Equations (2.5) and (2.6) above represent the conservation of mass of gas
and liquid, (2.7) and (2.8) are the momentum and (2.9) and (2.10) are the
energy balance equations of the two phases. In the momentum equations FL is
the drag force per unit volume acting on the liquid phase in the direcEion
of flow, and in the opposite direction on the gas phase, F G and Fw are the
drag forces per unit volume exerted by the tube wall on the gas anh liquid,
respectively, and 6=90° for horizontal flow and 0° for vertical upflow. In
the energy equations (2.9) and (2.10) n represents the effect of phase
change and it may be assumed to be equal to 1/2 [6], h is the enthalpy of
evaporation and dQ, /dz denotes the heat transfer rate per unit tube length
from the liquid to the gas. For bubbly and separated flows with liquid
adjacent to the tube wall, it may be assumed that FwG’O’ whereas the
interphase drag force FLG may be modeled as follows:
du duL

— (2.11)

Flo = Eoolug™uy) * 8gelig 37 ~ Y a2

where £ Gao is the viscous drag coefficient and ﬁG 20 is the virtual mass
coefficf%nt which accounts for the relative acceleré%ion between the phases

[s].

Equations (2.5)-(2.10) can be solved for the 6 unknowns: a, X, Ugs Yo
P and h, provided that the constitutive equations are supplied for EGG' [,
Fw and dQ. /dz. The tube cross-sectional area is assumed to be given and gge
mass flow rate is treated as a parameter. The thermodynamic properties are
specified through hG(P), pG(P) and pL(hL’P) which are also assumed to be
given.

Constitutive Equations. The constitutive equations for the interfacial
drag, virtual mass, wall frietion and interphase transfer rate are specified
according to the flow regime which varies along the tube. Close to the tube
entrance the flow is bubbly, but further downstream it may revert to the
churn-turbulent and annular flow patterns at higher void fractions. The
constitutive equations for £.., QGG’ FwLP and dQLfdz account for such a flow
regime change on the basis of the void Traction and are discussed in detail
in [5] and may be also found in [4,6-8].

Initial Conditions. The solution of the ordinary differential equations
[2.5-2.10] requires the specification of initial conditions. The fluid in
the vessel at z=0 is assumed to be at stagnation conditions characterized by
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stagnation pressure and subcooling. Based on this information, tube inlet
geometry and diameter and the liquid superheat required for the onset of
bubble nucleation [9], it is possible to find the position aldmg the tube
where two-phase flow occurs and to use this information to find initial
conditions for the two-phase flow model [5].

Solution Procedure. Equations [2.5-2.10] may be written in the
following form:

* *
bioe = ® (2.12)

where,X=(a, x, u,, u, P, h )T is the vector of dependent variables and A*
and B are matrices which depend on X. With the initial conditions discussed
above, (2.12) can be solved in terms of the stagnation conditions of liquid
in the vessel (pressure and subcooling) and tube geometric characteristics
(tube diameter and length) for the critical flow rate at the tube exit which
is determined by the following set of sufficient and necessary conditions

[10]:
A=0 and n;=0, i=1,...,6 (2.13)
* *
;he:z i;i?t(AtL igt}pe determinant of A and n. is the deferminant obtained
y p ng e i column of A by the column vector B . The solution of
these equations was performed by a variable step Runge-Kutta method

described in [5] and the critical flow results are discussed below.

2.2 Two-Phase Flow Jet Modeling

The axisymmetric jet configuration is characterized by the radial
coordinate r and the axial coordinate z with the radial and axial velocities
denoted by v and u, respectively. The velocity vector is denoted by U and
the time by t. With these notations, the modeling of the two-dimensional and
two-phase flow jet with phase change may be performed by the following
system of nonequilibrium two-phase flow equations [11-13]:

ar''e ar''F ar''c
- 2.14
at N 9z N ar & : )

whgre f is the vector of dependent variables and F, G and S are the vectors
which depend on f, i.e.

TR

£ - VL (2.15)
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Pelg

(BLu) 275, + (1=a)P
(B u ) (B v ) /7
(5gug)°/f, *+ aP
(EGuG)(ﬁGvG)/Eb

Gu e, + (u ey 572 + (1=a)p/p; ]

L Fgug)leg * (ugP+vgo)/2 + aP/Bg] -

PLYL
PeYg
(ELuL)(ELvL)fEL
(v /5, + (1-0)P
(EGuG)(EGVG)fﬁb
g
(Bgvg) /Pg + aP

_ 2.2 o
(vaL)[eL + (o Sy )72+ (0 a)prL]

- 2,, 2 =1 _|
L (Fgvg)leg + (ug“+vg )72 + aP/p]

-l oTy)

r(r-Ty)

r(roug = Ty, * Klugmy)]

ri(r vg = Ty, * K(vgrvp)] + n(1-a)P
r[-r QUg * Teyy, T K(u *uL)]

n[ -T VG + reVL - K(VG'VL)] + naP
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rM-Pa(1-a)/3t + (1=a)[K + (rc+re)£2][(uL-uG)2+
(v -vg)%] + (T =T )(egP/pg) * R(TGT)) =

2,2 ;
oy “+v 972 + rc[uL(uG u /2) +

vy (Vgmvp/2) K[uL(uG-uL) + vL(vG-vL)] -

(2.16)
(2.17)
(2.18)

PU, .V(1-a)
r"{-P3a/dt + a[K + (rc+re)f2][(uL-uG)2 +
vl = (rmr ) (e
rc(u62+v02)f2 + 1 [uglu ur2) + v

*P/pg) = R(T-T) ~

G(VL*VGIE)]_

L K[uG(u J + VG(VG L)] - PUG.Va} -
The above equations are valid at the Jjet axis where n=0 and away from the
axis where n=1. At the axis of the jet v.=v,=0 and 3G/3r=0. The other
variables appearing in the above equations are: ¢ is the internal energy, P
is the pressure which is assumed to be the same for the gas and liquid
phases, K 1is the interfacial drag function, T and T denote the
condensation and evaporation rates, and R is the Lngerfaclal heat transfer
coefficient. K, I, T and R have to be specified by the constitutive
equdtions as discuSsed below, The partial densities of gas and liquid are
defined as:

pg = apg (2.19)
EL = (1‘m)pL (2.20)

whereas the equations of state are assumed to be given in terms of pressure
and internal energy, i.e.

P = pG(P.EG) (2.21)

P = pL(P,EL) (2.22)

Equations (2.14), after being supplemented by the constitutive
equations, allow for the solution of the gas-liquid flow characteristies of
the jet. In particular, the pressure can be found by eliminating the void
fraction between (2.19) and (2.20), i.e.

EL pL(P'EL) + 36 pG(P,sG) = pL(P,eL) pG(P,aG) (2.23)

Constitutive Equations. The constitutive equatxgn or the interfacial
drag K is assumed to be a constant and equal to 10 Kgfm -s, whereas the
evaporation and condensation rates are specified by the following equations

[11]:

1/2
= - T T, =T T £ T 2T
I = A AC=a)p al sRu) ( L S)f g0 for T 2T, (2.24)
= 0, otherwise
= T =T T for T_.sT .
r, =2 Aapﬁ(l a) (T R ) ( - G)f g for TesT (2.25)
= 0, otherwise

where A is the interfacial area per unit volume of the mixture and A and A

are the time relaxation parameters for evaporation and eondensation “and aré
assumed to be equal to 0.1/sec. For N equal size sp?8r1c§l droplets of
radius r_ per unit volume and assumed to be equal to 10 and constant,
A is givgn by the following expressions:
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2/3 1/3 < 0.5
[ a (4uN/3) , when o ooy
A =
(1-0)23(unns3)"73,  when a > 0.5
; 1/3
[ja!NnN] y when a £ 0.5 (o7
T {3(1‘-(1).:"“11N]1/3, when a > 0.5
The interfacial heat transfer is modeled as follows:
(2.28)
R = aRG + (1*a)RL
where
1/2 0.35 2.29)
RG = (1 + 0.37 Re PrG )/rp (
(2.30)
= 8. Kk, /r
RL 8.067 L o
PPG = uGCprkG
(2.32)

Re = 2rppG|UG'ULlqu

i 1
and T is the temperature, R is the gas constanp,l k 1is tﬂf ngzzgit
conductivity, u is the viscosfiy and Cp is the specific heat a

pressure.

Initial Conditions. The solution of the brgnsz?nt iys?izbizi
differential equations (2.14) requires the specificat Oﬂ‘ E:e e the
conditions of the air atmosphere which, for the purpoiih othe ﬁgllowi .
modeling simple, is modeled by a steam atmosphere W o -gés o
characteristics; 1) T,=T.=294°K, 2) P=0.1Mpa, 3) =0.999, L ,
5) pg=0.63 Kg/m’, and %) (EJL=UG=0.

Boundary Conditions. The boundary conditions are spGCi?iS:e‘¥;a§2i
i £ j his purpose,
mputational domain of the jet. For t .
e Of i o s R and Z of the domain should be chosen
and axial dimension na ax e 1ot " vary
sufficiently large such *hat thé flow proper : e
significantly only inside this domainy At _tﬁe exit of ) Spdfgéussed
gas-liquid properties are determined by the crltlpal_flow mode ts  Sracuaser
above, while at the outflow boundary at z=Z it is assumed dar accu;ate
prOpe;ties can be extrapolated from the upstream by a secong orde aeeurate
extrapolation procedure [14]. The iide boundiiy1a10;;znent;soisiﬁz R
iti i the radia f

at the initial conditions, except Tor e

i iti i 1 to the corresponding valu
liquid velocities which are set equg or ) C
réggal node away towards the Jjet axis. At the 1n;}ow boundazyeziaf %é Eﬁe

i i be end, all properties are se ‘
excluding the region at the tu y A e S i
initi i £ the axial components of g
initial conditions, except for J e
i onding values at o

ities which are set equal to the corresp : ‘ . ‘

;ziﬁgiream in the computational domain at each radial position in the jet.

Solution Procedure. The solution of the system of equations é2é1t; tiz
accomplished by the Lax's [11,14] finite dirferepce scheme extende s
two-dimensional flow. The time derivative 3a/3t in the source terms 5, a

i i £ iqui inuity equation
98 in (2.18) was eliminated by the aid of the liquid continuity eq
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with the constant liquid density and all space derivatives in the source
terms were then centrally differenced. The numerical procedure constructed
in this way proved to be stable with the spatial and time step limitations
expressed by the Courant-Friedrichs-Lewy stability condition [14]. The
computational domain involved R =0.16m and Z =0.35m, where the radial
node separation varied from arJ%%%ﬁmm close tdm¥%e Jet axis to Ar=12.5mm
close to r=R . The axial node spacings varied from Az=3.12mm close to the
max
pipe exit to Ez-l2.5mm close to z-Zmax.

Computations were carried out with the initial and boundary conditions
discussed above until the steady state jet profile was established. Due to
the very high momentum of the two-phase mixture at the pipe exit, the jet
profile was established in a few milliseconds.

3. RESULTS AND DISCUSSION

The results obtained by the critical two-phase flow model are depicted
in Figs. 1 and 2. Figure 1 illustrates a comparison between the predicted
critical mass fluxes through tubes and the steam-water experimental data
[5,15] for saturated and subcooled liquid conditions in the vessel and for
tube length to diameter ratios up to 300. The stagnation pressure varied
from 1-3 MPa. As can be seen from this figure, the predicted critical mass
fluxes Go are within +10% of the experimental data.

A comparison of the predicted pressure distribution along the tube with
the experimental data is illustrated in Fig. 2 for the saturated liquid in
the vessel. This and other comparisons presented in [5,15] for a wide range
of liquid subcoolings and stagnation pressures and tube length to diameter
ratios shows that the proposed two-phase critical flow model is able to
reproduce the critical flow discharge well and that the detailed flow
conditions at the tube exit (liquid and gas velocities, quality, void
fraction and pressure) may be used with confidence as an input to a model of
the two-phase flow in the jet.

Using the boundary conditions at the tube exit as an input to the jet
model, Figs. 3 and 4 depict the predicted total pressure distribution at
different axial positions along the jet and the comparison with the
steam-water experimental data [16]. In these figures z/D denotes the ratio
of the distance along the Jjet axis from the tube exit to the tube diameter,
while the total pressure in the jet is defined as follows:

Pror = P * 0.5[apgqugt (1=adoyuy 1%/ [apg+ (1-a)p, ] (3.1)
Figure 3 illustrates the total pressure distribution for the saturated
liquid in the vessel, whereas Fig. 4 depicts the distribution for the
subcooled liquid with the subcooling of 22°C, The predicted total pressure
distribution also compares well with the experiments and it is shown to
exibit a double pressure peak.

The occurrence of the double pressure peaks in the jet can be
associated with the gas-liquid nonequilibrium flow which may be justified by
examining the numerical results of the void fraction and gas and liquid
radial and axial velocity distributions [11]. Close to the tube discharge
end, the radial and axial gas velocities exceed considerably the liquid
velocities because of the large pressure differential between the tube exit
and the ambient atmosphere which produces an expansion of the gas but not

127



that of the liquid. The liquid can, therefore, be only dragged along with
the gas and its velocity can increase until it reaches the velocity of the
gas. Because the inertia of the liquid phase is larger than that of the gas
phase, the former phase has the tendency to remain close to the jet axis and
the predicted void fraction distribution in the jet is in accord with this
explanation as well as with the X-ray measurements [17]. Further comparisons
of the numerical results of flow distribution in the Jet between the
saturated and subcooled liquid conditions in the vessel reveal that the
subcooled liquid has a greater tendency to disperse radially which may be
explained by the degree of hydrodynamic and thermal nonequilibrium in the
flow. As noted above, the subcooled liquid exiting from a tube has a greater
degree of nonequilibrium than the saturated liquid and this, in turn,
affects the distribution of phases in the two-phase jet expansion region.

4, SUMMARY AND CONCLUSIONS

Two-phase flow nonequilibrium models of the critical flow in tubes and
in the jet expansion region were presented and used to study the flow
distribution. The model predictions were sucessfully compared with the
steam-water experimental data of subcooled and saturated liquid discharging
from a vessel at different stagnation pressures through variable length
pipes into an ambient air atmoshpere. The results show that the subcooled
liquid discharge through short tubes produces considerable hydrodynamic and
thermal nonequilibrium at the tube exit and that the exit flow conditions
are responsible for producing a large degree of nonequilibrium in the
two-phase flow expansion region. Because of this, the total pressure
distribution in the jet exhibits considerable axial and radial dispersion.
The radial pressure distribution is shown to exibit a double peak and has a
greater dispersion for the subcooled liquid discharge. The liquid phase has
a tendency to remain close to the jet axis and the gas to disperse in the
radial direction,
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