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FOREWORD

The scope of thermal engineering ranges from basic principles to hardware application concerning the flow of
heat and matter. It encompasses a broad fraction in the engineering discipline, including typically heat transfer,
fluids engineering, combustion, vehicular propulsion, nuclear power generation and alternate energy sources.
Since its infancy, research in thermal engineering has been mostly centered in the geographical area surrounding
the Atlantic Ocean. In recent years, however, such research in the Pacific region has been increasing at a rapid
pace, with Japan and the United States (who share both the Atlantic and Pacific Oceans) taking the lead. In order
to stimulate interest and progress in research in thermal engineering in the Pacific area, the American Society of
Mechanical Engineers and the Japanese Society of Mechanical Engineers have jointly sponsored the 1983 ASME-
JSME Thermal Engineering Joint Conference held on March 20-24 in Honolulu. All countries and regions in the
Pacific area are invited to participate but researchers from other geographical districts are equally welcome.

The Conference zeroes in on four important subjects: (i) the fundamentals of heat transfer with the stress on
new theories, concepts and measuring techniques, (ii) heat exchangers with applications in energy systems, (iii)
combustion and combustors for energy systems and (iv) thermal engineering problems relevant to energy systems.
ASME has contributed fifteen sessions (including an open forum for oral presentations) with 125 articles covering
item (i) and part of items (i) and (iv). JSME has also contributed fifteen sessions with 110 articles covering item
(iii) and part of items (i) and (iv). In addition, nine keynote lecturers are invited, five from ASME and four from
JSME. All invited and general papers are presented in four volumes of the Conference proceedings. The articles
contributed by ASME appear in Volumes 1 and 2, while those from JSME compose Volumes 3 and 4. All papers
were reviewed in accordance with the standards of both sponsoring societies and thus were assured of high quality.
In the case of Volumes 1 and 2, the ASME session chairmen should be credited for editing the respective chapters
containing the papers that are presented in their sessions. The JSME Conference Organizing Committee has edited
Volumes 3 and 4.

Volume 1 begins with a chapter on two-phase flow and boiling phenomena, a popular topic in heat transfer
research. Interest in this subject never diminishes but continues to increase, as evidenced by the large number of
articles presented. The chapter covers a broad spectrum including propagation of pressure waves and flow transi-
tion in two-phase flow, transient boiling, cavitation, dryout, droplet behavior, flashing, thermosyphone, nucleate
and flow boiling, critical heat flux, burnout, impinging jets, transient behavior and correlations. Chapter 2 con-
cerns a timely subject on natural convection in enclosures. The enclosures of various geometries are treated, in-
cluding those filled with porous media. Experiments and numerical approaches represent two major tools in these
studies. Various methods of heat transfer enhancement are applied in the third chapter, including the use of
treated surfaces, fins, ribs, rough surfaces, turbulence promoters, swirl flow devices and surface vibration. The
last four chapters are concerned with heat exchangers for high temperature applications, of compact-and-light
weight type, of air-cooled type, and the problems of air-side fouling. Applications of compact type to boiling,
dehumidification/cooling systems and systems with heat generation are unique. Of air-cooled type, effort is
directed toward augmentation, correlations, overall heat transfer coefficient, effect of flow maldistribution, and
dry/wet operation.

Volume 2 contains seven chapters and five keynote lectures. The first six chapters are concerned with the
contemporary applications of heat transfer, such as fluidized/packed systems, underground conversion, geother-
mal utilization, underground media, ocean thermal energy conversion (OTEC) and alternate energy sources. The



last chapter is composed of late papers covering miscellaneous topics on two phase flow, thermal stability, packed
beds and heat exchangers. The keynote lectures were delivered by well-known young experts on the topics of
separated forced convection, particle transport properties and dispersion in turbulent flow, heat and mass transfer
in combustion, shell-side condensation, and boiling in porous media, respectively.

Volume 3 consists of five chapters and two keynote lectures covering some aspects of heat transfer funda-
mental and applications to power generating systems. Grossly diversified subjects in natural, forced and combined
convection feature the uniqueness of the volume. The chapter on conduction is characterized by various applica-
tions, while the condensation chapter treats film condensation, augmentation, noncondensable gas effect, direct-
contact condensation and reflux condensation in thermosyphons. The articles on advanced thermal power genera-
tion systems treat the performance of two-phase flow turbines and the regenerator effectiveness of a Stirling
engine. The chapter on heat transfer in nuclear reactors focuses on two major concerns, namely the performance
and safety of nuclear reactors. It is fortunate that two internationally well-known scholars on critical heat flux
and boiling heat transfer, respectively, are willing to share their authoritative knowledge and life-long experience
on the subjects in their keynote lectures.

The articles on combustion, combustors for energy systems and thermal engineering problems relevant to high-
temperature energy systems are presented in Volume 4. There are nine chapters dealing with combustion in gener-
al, turbulent combustion, furnace combustion, combustion in Diesel engines, combustion for fuel economy,
alternative fuel engines, gas turbine components and applications, thermal radiation and heat transfer in general.
The volume is capped by two keynote lectures on combustion and hydrogen fuel engines. The combustion-related
chapters cover a broad spectrum in combustion ranging from the basic principles to application as well as fuel
economy.

The editors wish to express their gratitude to all those who contributed to the publication of the proceedings.
They include the authors, the reviewers of the papers, the ASME session organizers, the JSME Conference Com-
mittee members, the session chairmen and vice chairmen, the ASME and JSME: Headquarters personnel and
finally, Professor H. Echigo, Ms. Ling H. Yang and Ms. Mimi L. I. Yang for their assistance. The Conference has
provided the opportunity for the exchange of ideas and experiences among the researchers in various areas of
thermal engineering. We hope that the proceedings will prove to be a valuable reference for future research.

Wen-Jei Yang, Ann Arbor
Yasuo Mori, Tokyo
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AN ACCELERATION WAVE MODEL FOR THE SPEED OF PROPAGATION OF SHOCK
WAVES IN A BUBBLY TWO-PHASE FLOW

F. Dobran
Department of Mechanical Engineering
Stevens Institute of Technology
Hoboken, New Jersey

ABSTRACT

The propagation speeds of shock waves in bubbly two-
phase fluid mixtures have been investigated by means of
an acceleration wave model. By assuming that the two-
phase fluid mixture is nonconducting and that the accel-
eration wave can propagate as a shock wave, an analyt-
ical expression is derived for the speed of propagation
of this wave which depends on the speeds of sound of
both phases, on the densities of phases, on the volume
fraction of the dispersed phase, and on the model for
the virtual mass coefficient in the constitutive equa--
tion for the interphase momentum transfer. It is shown
that the model for the virtual mass coefficient signif-
icantly affects the speed of propagation of the accel-
eration wave and that the best comparison between the
analysis and the experimental data for the speeds of
propagation of shock waves is achieved when the coef-
ficient depends on the volumetric fraction of the dis-
persed phase.

1. INTRODUCTION

A small amplitude compressive disturbance in a two-
phase mixture of liquid and gas propagates at the speed
of sound and the propagation speed of this sound wave
can be smaller than the speed of sound in either phase
[1]. Furthermore, the speed of sound in two-phase flows
is significantly affected by the flow regime (such as
stratified, slug and bubbly flow) and by the pressure
of the mixture [1]. As the amplitude of the compressive
disturbance in a bubbly mixture is increased, the speed
of sound behind the disturbance becomes greater than in
the front of it snd this disturbance or wave front
readily steepens and forms a shock wave [2]. The
strength of the shock wave depends on the volumetrie
fraction of the gas phase in the mixture and it is
larger at lower gas volumetric fractions where the rate
of sonic veloeity change with the gas volumetric frac-
tion is greatest.

The propagation speed of a finite amplitude pressure
disturbance does not only depend on the strength of the
disturbance and flow regime, but also on whether this
disturbance is generated into an initially stationary
or into a moving two-phase mixture. In the latter case,

the prevailing distribution of the pressure gradient in
the flow field can be of considerable importance. The
experimental studies of shock waves which are propa-
gating into stationary air-water and steam-water bubbly
mixtures close to the atmospheric pressure were under-
taken by Campbell and Pitcher [3], Wijngaarden [4],
Miyazaki, Fujii-E and Suita [5], Mori, Hijikata and
Komine [6], and by Noordzij and Wijngaarden [7];
whereas the propagation speeds of shock waves into
moving air-water bubbly mixtures close to the atmos-
pheric pressure were investigated by Padmanabhan and
Martin [2], and by Akagawa et al. [8]. From these
experiments the following conclusions can be drawn about
the structure of shock waves in bubbly two-phase flows:

i) At very small gas volumetric fractions, the
shape of the shock wave changes along the duct
[7]1. The wavefront starts off with a steep
pressure profile between the front and the
back of the wave, and the back of the wave is
characterized by a high frequency pressure
oscillation (type A shocks in Ref. 7). Further
downstream along the duct, the wave front is
characterized by a gradual pressure change and
no pressure oscillations are observed behind
the wave (type C shocks). Noordzij and
Wwijngaarden [7] attribute this change of the
wavefront pressure profile along the duet to
the relative motion of bubbles and liquid.

ii) In a long tube in which a mixture of air and
water is flowing, Padmanabhan and Martin [2]
observed no type A shocks when the valve at
the downstream end of the tube was quickly
closed. However, they did observe that com-
pressive disturbances of moderate strengths
transform into steep shock waves and that the
gstructure of shock waves did not change along
the tube. The absence of type A shock waves is
attributed to large valve-closing times, and
the absence of change in the wave structure
along the tube is attributed to the lower
viscosity of water in the experiments of Ref.
2 than of water/glycerine in the experiments
of Ref. 7.

iii) Akagawa et al. [8] also report type A and C
shocks in the immediate vicinity of the wvalve



at the downstream end of the tube and classify
these shocks according to the gas volumetric
fraction @ (type A shocks correspond to

o < .075 and type C shocks correspond to

a > .13)., It is important to note that the
shock classification in Ref. 8 is based on the
observations in the viecinity of the downstream
valve, while in Ref. 7 it is based on the
observations along the tube.

The speed of propagation of shock waves in bubbly
two-phase mixtures is greater than the acoustic speed
and it is attributed to the strength of the shock P1/Pg,
where P; and P, are pressures behind and in front of the
shock wave respectively. Based on the onedimensional
and homogeneous flow model with py/py << 1, and assuming
that the gas phase behaves as an Isothermal ideal gas,
the following.speed of propagation w of shock waves can
be obtained ([3], [7], [8]):

P P
w=a * a2 = o (1)
© Po ’ "o ail—aipﬂ !

where a, is the speed of sound in an isothermal and
homogeneous two-phase flow. Eq. (1) compares favorably
with the available experimental data of air-water and
steam-water bubbly flows at low pressures and for low
values of gas volumetric fractions ([3], [51, [8]1).

At high pressures, the assumption that the gas behaves
as an ideal gas is expected to break down, and at
higher gas volumetrie fractions o, the assumptlons that
the flow is homogeneous and flow pattern bubbly are
wrong. In these circumstances, then, Eq. (1) is not
expected to apply.

From the above, it is clear that although a great
deal of progress has been made in the investigation of
shock waves in two-phase flows, there still remains a
number of issues to be cleared up. In particular, the
problem dealing with the growth and decay of finite
amplitude pressure disturbances and the relationbetween
the speed of propagation of these disturbances with
various flow regimes are poorly understood. The pur-
pose of this paper is to propose an expression for the
propagation speed of shock waves in bubbly two-phase
flows which is based on an acceleration wave model. It
is shown that such a model is indeed reasonable and,
therefore, that the acceleration wave model can form a
basis for a subsequent investigation of the growth and
decay of finite amplitude disturbances in bubbly two-
phase flows.

2. ANALYSIS

2.1 Governing Equations

An acceleration wave model for the speed of propa-
gation of finite amplitude disturbances is constructed
by assuming that the acceleration wave is a singular
surface across which the veloecity and temperature remain
continuous but the acceleration suffers a discontinuity.
For the purpose of analyzing the speed of propagation
of such waves, I will utilize the conservation laws,
jump conditions across the singular surfaces, and
constitutive equations as developed by Dobran [9,10].

The two-phase fluid model in Ref. 9 is constructed
by volume averaging of the instantaneous field equations
for each phase, and the constitutive equations in Ref.
10 account for the temperature gradient in the mixture,
for velocity gradients, for the viscous drag, and for
the virtual mass effects. To each point of space X
corresponds a deformation function Yge of phase B,
B=1,2, such that

X = X Xgrt) , (2)

where Xg is the place of a particle of phase 8 in the
reference configurations Kg. The velocity and
acceleration of phase B are

KXot o XWXt
T % "0z

Vp = R, : (3)

The partial density of phase B is EE = agpg, where ag
is the volumetric fraction and pg is the mass density

of phase B. The density and velocity of the two-phase
mixture are then defined by the following equations:
2 2 2
p=L o L agp, , PV=L p, V, (4)
g1 B g1 BB g1 P B

and the diffusion velocity Ug is defined as follows:

U, =V, -v . (5)

B B

A moving surface in two-phase flow is represented by
f(x, t) =0

with X lying on this surface. The unit normal vector

n on the moving surface and the velocity W of this
surface are represented by the following equations:

ne VL w3 (6)
(V2.V9) Vowewe)

If Q is a function of (X, t) and it is continuous except
on a discontinuous surface, then the jump of  is
defined by

[el=0" -9 , (7)

where 0 is the limit of © at a fixed time t as the
singular surface is approached from the side towards
which N is directed and 2 is the corresponding limit
of { as the singular surface ig approached from the
other side. The conservation and balance equations for
phase B, B=1,2, in the absence of phase change are from
Ref. 9:

Mass: \EBJ'EBV"’B =0 (8)
[P(vg-w)l-n =0 (9)
Linear Momentun: pg iBzV’TBJrEEbBJ'aB (10)
Loz v;((ve-w)-n)- Tonl=0 (11)
Angular Momentum: ﬁsﬁz»'f;tr (12)

Energy: Bt mtr( T, V)-Vegy+ Bprgre,  (13)
s 1 = FT =
[ogegts Vg V) vB-w)+q8—TB Vglen =0
it o (14)
p
Entropy: BBEB"-V'(gE)- g : gB >0 (15)
B 8
[Byoa(Vp-Wen+ - Ggnl> 0, (16)



where 1EAis the stress tensor, bB is the body force
vector, pg is the momentum supply or interaction term,
€p is the internal energy, Qg is the heat flux vector,
rg is the heat generation rate per unit volume of the
mixture, €3 1s the energy supply or interaction term,
sg is the entropy, GE is the t$pperature, and §§Dis the
entropy supply. In Eq. (11 gh denotes the product
of a linear transformation B (a second order tensor)
and a vector and is, thus, a vector, and in Eq. (14),
tr(1ETVVB) denotes the trace operation on the linear
transformation formed by the produect of linear trans-

formatioris Tg' and Wg. The subscript T denotes the
transpose, and the backward prime affixed to a quantity
of phase B denotes the material derivative of that phase.
For a quantity $B, for example, we have:

N
~ - B
Ys 3%

+WB- Vg - (17)

The constitutive equations which will be utilized
in this article to study the propagation speeds of
acceleration waves assume: 1) no phase change, 2) both
fluids are at a single but nonuniform temperature, 3)
viscous effects in the constitutive equation for Tg
are absent, 4) relative velocity and virtual mass
effects are not negligible, and 5) the two-phase mixture
is in a state close to the equilibrium, i.e. the
linearized constitutive equations are applicable. In
this case we have from Ref. 10:

68 = =vg Vo-Eg (V1-v,) - &g (V;-V,) (18)
M, -0 (19)
T =gl (20)
0 =< Vo-tg) (V- )-vg (V, -V, )-Pgs Ol (21)

220, 8,=0 (22)

€g EB(G’BE)’ sg = SB(G,EE), ﬁé=ﬁé(9,ﬁé) (23)
m
& B -
Vg =€g Osg , dPp=-sg dO* ET dog (24)
B

where | is the unit linear transformation, Tg is the
partial pressure, and the coefficients Ya, &g1s Agy,
Kg» ;Sl’ and Vg depend on the equiliprium state prop-
erties of two- ﬁase flow (O, Py and Pp). In order for
Egs. (18) - (23) to satisfy the second law of thermo-
dynamics Eq. (15) we must have (see Ref. 10 for de-
tails):

Kg20; B=1,2 (25)

1120, &yt 8 =0 (26)
— Py

b = -0 Ry sy (1)
. fy

Tay = 0¥y * 0y 8) (28)

B0 205 895 * 8y =0, Y+ Y, =0 . (29)

The conditions specified by Egs. (26)5, (29), and {29}3

are only valid for dispersed two-phase flows where
interfacial and nonlocal effects can be neglected [9,
10,11].

2.2 The Acceleration Wave
An acceleration wave is a singular surface across
which

[e]-0, [yJ-0, a,: [ivg] 70, (30)

where Qg is the amplitude vector of the acceleration
wave. For a quantity ¢(X,t) which is continuous across
the discontinuity, [y] = 0, and a theorem due toMaxwell
(Ref. 12, Sec. 180) states that

[3”1%%-2 = -[VW(X,6)] «nw (31)
[W(x,t)]=—[§‘“(—§f—)+]’;‘ . (32)

where w is the normal speed of the singular surface,
WwW=nw.

Since the velocity Vg is continuous across the
acceleration wave (Eg. (30}2), Maxwell's theorem Eq.
(32) yields:

[Vv,1- -a,®% (33)

Vvl --q.-.0, (34)

w

where Q) denotes the tensor product of the vectors ag

and 0. From Egs. (9), (11) and (20) the densities and
pressures are continuous across the acceleration wave,
i.e.

[bgd=0, [TJ=-7,11-0. (35)

Using Egs. (35)1 2, (19), (30),, (12) and (22); in Eq.
(14), we obtain that the heat flux is continuous across
the wave

(q.J-n-o0. (36)

Forming the jump of Eq. (8) and utilizing Eqs. (35)
and (34) the results are

[%6] = -5, Vv 1=, 9% (37)

and substituting ¥ = bg in Eq. (32) and using (37) the
following result is obtained:

— s — Qg
[V51 - Lo - - 5, E5n (38)

Using Egs. (24), (19), (20), (8) and (23), in the energy
Eq. (13) results in the following simple expression for
the energy equation:

- Ny a“g N V5.5
Pg Cug © - ={gg ) pg = -V-Qgrog 7g ()
[ p
B B
where the specific heat at constant volume CVB is
defined by

ds 3E

S I o)



and

v 90
oz +Vo-v . (41)

In order to keep the model as simple as possible, I
will also assume that the two-phase mixture is noncon-
ducting and that no heat generation in the mixture
exists. Thus

ﬁBEo, rg =0 . (42)

Utilizing these assumptions in Eq. (39), forming the
Jump of the same equation, and using in the resultipg
expression Eq. (31) in order to eliminate [0] ana [bgl,
we obtain that the jump in the temperature gradient is
related to the jump in the density gradient by

0

om
[V0] = - (552)_ [V5,] . (43)
°g Cvp fg
From Eqs. (23), and (43), and from the fact that the
density and thg

respect to the temperature and density are continuous
across the wave, it is easy to show that

BJTB _
EV?T_B]= ("_"—) EVDB] s (44)
aps Sg

where use was made of the following thermodynamic
identity:

ar am am, 2
=) = (D) 2R - (45)
3 s 3p, O C P
P %8 Pg~ Pgrvp B
Forming the jump of the momentum supply Eq. (18) and
using Egs. (30), (35);, and (43), we obtain

(9.3 -, =0 () (V5,1- 4, (a,-a (46
Pel= g o~ —G LtV egd - 8 (@)-0p) . (46)
g “ve B
The assumption that the two-phase mixture is adiabatic
(Eq. (42)1) requires that in Eq. (21)
KB=O, Vslzor CBl(Vl- V2 )"' DB SB 0 uB =0, (47)

and since V; - V, = U, - U,, Eq. (47)3 is reduced to

L1 P51 0 T | (W 0

= (48)
21 058,925 [ | U2 o
which for the nontrivial solution requires that the
determinant of the square matrix vanishes. Carrying

out this computation and using the constitutive Egs.
(27), (28) and (29), , it follows that
2

Y, =Y,=0 . (49)

Finally, forming the jump of the momentum Eq. (10) and
utilizing Eqs. (20), (35)1, (30}3; (46) and (38), we
obtain

partial derivatives of the pressure with

_ 8118 EB
oy a8=(g:—) —(@g-nn-4,,(a,-a,) . (50)
DB SB w

By decomposing the acceleration amplitude vector
Qg into tangential and normal components to the singular
surface, Eq. (50) can be investigated for the speeds of
propagation of both the transverse and longitudinal
waves. A substitution of Qg = (CIBNI' )t into Eg.
(50), where t is the unit tangent vector to the
singular surface, yields:

Py * by -4\ [(@p- it 0 s
51

b P2

- Ay (azeﬂt 0

Setting the determinant of the square matrix equal to
zero and utilizing 857 = -By7 (Eq. (29),)results in
the expression:

Byq = - <0

11

P1*Py

which is inconsistent with Eq. (29)1. It, therefore,
follows from Eq. (51) that@y+t =@zt = 0, and: no
transverse acceleration waves can exist in a dispersed
fluid mixture of two phases.

Substituting @,= (@,- NN into Eq. (50), the
propagation equatibns fér the longitudinal waves in
two-phase flow become:

.

P o+ A -El-(*-l—) -2\ fa.-n)n 0
R T By g 11\ *%1
W 3P 8
= (52)
Eé BEE -
by p2-ﬂ21--'§(—*-_—} (02-n)n o
w 302 52

Again, utilizing Eq. (29); and setting in the above
equation the determinant of the square matrix equal to
zero, the speed of propagation of longitudinal acceler-
ation waves becomes: SR

(A, *VE))/A; s (53)

=
1}

el S
Ay =7y C (0,80 )0, C5(Pp*y4)

>
i

— 2= _ 2, 2 —— 222
5 = (91 07(Py+h 3 3-0,C5(Py +8y1 ) 17440, P,C1 CoA
A, = 2[9102+an( P10, 0o,

and

a. ot
) o2 2{—2)

I ;
0 8

GEE

3 : (54)

9p2 s,

The discriminant in Eq. (53) can be also written in the
following equivalent way:



= nlp— P 2
A5 10,070y 81 00,0500y *4y4 017 -
(55)
45,9,0705 15,P,*A,, (5,+5,))
152712001 2 YRR

which shows that in Eq. (53) there are two physical
solutions for the speed of propagation of acceleration
waves., When +0 these two speeds approach the speeds
Cl and C2 given by Eq. (54).

3. DISCUSSION

The speed of propagation of an acceleration wave in
a two-phase flow is expressed by Eq. (53). It is first
observed in this equation that in the limit of single
phase flow, the speed of an acceleration wave is reduced
to the speed of sound in that phase. Second, when
A11+0, the two-phase mixture becomes in a sense ideal
and then the acceleration waves propagate at the speeds
C; and Cp given by Eq. (54). For a two-phase bubbly
flow, however, 417 # 0 as a number of studies confirm
(see Refs. 13 and 14), and Eq. (53) shows that the
propagation speed of an acceleration wave can be sig-
nificantly lower than the speed of sound in either phase
(see Figs. 1 and 2). For a small pressure disturbance
in a two-phase flow, the acceleration wave speed is
equivalent to the speed of sound of the two-phase mix-
ture since no experimental evidence exists that small
pressure disturbances grow into larger ones to form,
for example, shock waves. This indicates that a two-
phase mixture effectively damps small pressure disturb-
ances and that this damping comes about primarily because
of the relative motion between the phases. The large
amplitude pressure disturbance, however, has the effect
of producing a shock wave as discussed above, and the
shock wave propagates at a greater speed than the speed
of sound in the mixture. Since no assumption was made
in the derivation of Eq. (53) for the size of the accel-
eration disturbance, this equation should, therefore, be
able to predict the speed of propagation of shock waves.

To investigate the possibility for Eq. (53) to model
the speeds of propagation of shock waves, constitutive
equations must be supplied in this equation for Cy, Cp
and A1]. A very reasonable assumption is that Cy = aj
and C2 = ap , where a; and ap are the speeds of sound
in phases 1 and 2 respectively, 1.e.

a2=(:i) ,a2=(§3) : (56)
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where Pl and Pp, and py and pp, are pressures and
densities of the two phases. The above assumption is
reasonable in view of the fact that

iézaBPB s 5#:&698 » apta,= 1 (57)
am £l P apP
(—B) =«(—-B) « B {8y, (58)
g % 8% poa/(nl) BB
°8™ 30, Py
since, in many situations of practical interest,
30,
B
(=) ~ O.
Bpﬁ PB -

In a bubbly two-phase fluid mixture, the coefficient

Agy in Eq. (18) is referred to as the virtual mass
coefficient. It depends on the equilibrium state prop-
erties of two-phase flow (0, D7, and p,),and in the
literature ([13], [14]1) it is given by

A B s

11 = %P Cyy (59)

where ap is the volumetric fraction of the dispersed
phase and Cyy is regarded as a function of wy [14].
Upon substituting in Eq. (53)

B1170PCipp P00,

C, =a 3 C

0,=(1-a)p,

2T % o

where o is the volumetric fraction of gas bubbles, we
obtain

2
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The two physical solutions for the wave speeds in Eq.
(60) are denoted by wy and wp. For an air-water and
steam-water mixture close to the atmospheric pressure
where pg<< py, Eq. (60) predicts that w} is independent
of o an , and that wy ~ a;. The second wave speed

in the same equation 1s, however, not only much less
than either ag or a,, but it also strongly depends on
CyMm as is illustrated in Fig. 1 with the dashed lines,
and this dependence is more pronounced at lower values
of Cyy. For a single spherical bubble moving through
an infinite liquid the theory predicts that Gy = -5,
but for a bubbly two-phase mixture Cyy is regarded to
be less than .5 and a function of al[l4].

The dependence of Cyy on O can be ascertained from
the experimental data othhe speed of propagation of
shock waves in two-phase flows as is shown in Fig. 1.
The data in this figure pertain to the air-water/glyc-
erine two-phase mixtures in which shock wave fronts
propagate at an atmospheric pressure into stationary
two-phase mixtures. At a small value of a, the speed
of propagation of shock wave is very sensitive on its
value, whereas at a larger value of a, this speed levels
off to a constant. A very reasonable accord between
the experimental data in Fig. 1 and wp can be achieved
Fy ghe following simple representation of Cyy in Eq.

60):
(é1)

Ciny = .3 tanh(4a) .

™

Utilizing this value of , further comparison of the
theory with the experimental data is shown in Fig. 2 for
two cases: 1) for the case when the shock wave propaga-
tes into a flowing air-water mixture, and 2) for the
case when the shock wave propagates into a stationary
steam-water mixture. The prediction of the experimental
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data in Fig. 2 is very reasonable except possibly of
the data of Akagawa et al. [8] at large values of a,
However, since the experimental data in Ref. 8 were
scaled to the atmospheric pressure, this scaling might
not be accurate at large o. Without such a scaling
each data point would correspond to a different pres-
sure of the wave front.

Also shown in Figs. 1 and 2 are the predictions of
shock wave speeds from Eq. (1). In both figures this
prediction is very reasonable and has the advantage
over Eq. (60) of being simpler. At higher pressures,

where the assumptions that Pg << pyg and that the gas
obeys the ideal gas low become incorrect, Eq. (1)ceases
to be valid.

4. CONCLUSIONS

The acceleration wave model presented in the paper
is able to prediet the speed of propagation of shock
waves in bubbly two-phase flows 'reasonably well pro-
vided that an account is taken in the theory for the
dependence of the coefficient Cyy in the virtual mass
coefficient Agy on the volumetric fraction of the
dispersed phase. Having established this, the acceler-
ation wave model discussed in the paper can be utilized
to study the growth and decay of finite amplitude dis-
turbances in two-phase bubbly flows. Through such a
study, it should be possible to prove the existence of
a critical disturbance where any initial disturbance
with an amplitude greater than the critical one always
grows into a shoeck wave, while a disturbance with an
initial amplitude less than the critical always decays.
The existence of a critical amplitude should be consis-
tent with the relative motion and dissipative effects in
two-phase flows.
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